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longer than for case (ii) or for constant heat flux at the 
boundary. 

SECOND PROBLEM : 
ARBITRARY WALL HEAT FLUX 

The solution for an arbitrary wall heat flux distribution 

q = ij(X)[l + $I{a.(X) cos m0 + b,,,(X) sin me)] 

can be obtained in this case by applying Duhamel’s super- 
imposition theorem on the solution expressed by equation 
(9). The final result can be expressed in the form 

in which 

{I,, (X)cos m0 + Zmnsa(X) sin me} (12) 

Z,,(X) = j g(X) dX Z,,(X) = i q(X) eoisx d X 
0 0 

I,,&X) = i a(X) a,(X) eatzxdX 
0 

Zmsb(X) = j G(X) b,(X) ca’mSxdx. 
0 
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NOMENCLATURE 
thermal diffusion coefficient ; 
specific heat ; 
convective heat-transfer coefficient ; 
thermal conductivity of solidified material ; 
latent heat of fusion ; 
temperature ; 
dimensionless temperature ; 
position co-ordinate ; 
dimensionless co-ordinate ; 
thickness of frozen layer ; 
thickness of frozen layer at steady state ; 
modified time ; 
time ; 
density ; 
Biot number. 

Subscripts 

f > at freezing temperature ; 
1, liquid phase of solidifying material ; 
a, steady state ; 
w, wall. 

INTRODUCTION 

RECENTLY there have been some attempts by several authors 
[14] to produce a closed yet simple relation giving the 
freezing rate of a warm liquid. Most of the solutions avail- 
able are cumbersome and involve extensive computations. 
Below, we give a new analytical solution which is in a 
closed form and easy to use in practical situations. 



SHORTER COMMUNICATIONS 1061 

SOLUTIONS aT 

The system to be analysed is shown in Fig. 1. A liquid 
x= 1; -= ax 

at a constant temperature+ t,, flows over a cooler isothermal 
wall. A frozen layer forms over the wall and reaches a 
steady state thickness. The question arises as to how the 
growth of the freezing layer progresses. 

(lb) 

T&8) = T, = 1, (11) 

X,lT(X,B)=T>l, (12) 

-tw= conrt. I 

where Bi is known as Biot number and equals to h&k. 

Equation (8) can be integrated from X to X = 1 to give 

where 

B=(‘I;- l)Bi+k 
[ 
(q- I)+-$ 

Pr 1 $. 

Using the fact that 

idn!Tdp=j(X-n)Tdn, 

then equation (13) can be further simplified to 

FIG. 1. The sketch of the frozen layer and the temperature x 

distribution within it. 6’; (X-,,Tdn=T-I-(X-l)/?+;:, J 1 
In an attempt to solve the problem it is assumed that the 

x 

frozen layer properties and the convective heat transfer 
coefficient remain constant with time. is 

1 

nTdn(Y-l)-j~X-1)Tdn), (14) 

1 
The set of equations describing the process are : or re-arranging the integrals in the last equation one obtains 

at a2t 
z=as 0 d x < s(t). 

x=0; t(o,e)=t,, 
x 

(1) 
a2; (X-n)Tdn=T-l-(X-l)B (2) J 1 x x20; t(x,O)=t,, (3) -&X-l)$+;$ (2rf-X)Tdn. J (15) 

x=S; kE=h&,-t,)+{pC#,-t,)+pL}$ 
1 

(4) 
To make use of the boundary conditions at the wall- 

@, e) = rl (5) 
frozen liquid interface we put X = 0 in equation (15) which 
results in 

x 2 6; t(x, e) = t, > t/. 

The solutions of the above equations can be affected by 
making the following set of transformations : 

@) $~[j~Tdn-;]~=5_-l+(T,-l)Bi+~ 

0 

x = x/a; 8 = ae; T = tJtp (7) x (T-l)+& $, (16) 
Under these transformations equations (l)-(6) reduce to : [ 1 

PI 

aT aZT X da2 aT 
or the re-arrangement of the last equation gives 

6s~=axz+z.d8.ax 

x = 0; T(O, @) = T,, 
;I; $k’[/nTdu-; (Tr+&)]} 

0 
x 2 0; T(X, 0) = 1;, = T, - 1 + (T, - l)Bi. (17) 
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Integrating equation (17) with respect to 8, finally, one 
obtains 

0 

J-I (T,-1)+(7;-1)y dl9 I 
62 = o (18) 

Equation (18) gives an expression for 4th the instantaneous 
thickness of the frozen layer, directly in terms of the integral 
ofthe temperature profile in the frozen layer and the boundary 
condition at the wall. Since it involves integrals it has the 
usual advantage of integral formulation in the sense that 
it is relatively insensitive to small variations in the kernel 
function [5]. 

As one does not know the temperature profile in the 
frozen layer, a different approach has been used, namely, 
finding the upper and the lower bounds on the integral in 
the denominator of equation (18). 

Since T, < T < 1, then for the bounds we find 

Using the above inequality in equation (18) one obtains 

e 
2 

T, - Vi + WC,~Jl s 
(T, - 1) + (T - 1); d@ c 6’(t) 

0 
B 

2 

d 1 - [Ir; + Wq.f,)l Sr 
(T, - 1) + (T - 1): d@, (20) 

II 

which gives the upper and the lower bounds for s’(t). A 
better approximation can be obtained by taking the average 
values of the denominators in the bounds : 

e 

2 (T, - 1) + (T - I)? d@ 

#= o (21) 

Equation (21) is a general solution giving the growth of 
the freezing layer. A computer or graphical calculation can 
be most easily carried out. 

However, it is possible to simplify the last relation on 
physical grounds as follows; if T, = 1 which is another way 

of saying that the flowing liquid is at the freezing tempera- 
ture, equation (21) simplifies to 

6=2 
1 

(r, - cd C, 
(fl - cd c, + 2L 1 

fJ&i. (22) 

Also for t, + 0 the last relation reduces to 

Equation (23) is the same as the equation (19) of [6] when 
it is assumed that for molten metals and rocks C,t,/ZL - 1 
and for water Cpt,/2L i 1. 

A further interesting conclusion which can be derived 
from equation (21) is that on differentiating 6’ with respect 
to 8 we obtain the steady state thickness of the freezing 
layer as 

k 6, =r!~,_ 
t,-ctl h,’ 

(24) 

which is the same as the equation (1) given in [3]. The 
equation (21) can also be used to calculate the growth of the 
frozen layer on a wall of finite heat capacity as has been 
shown elsewhere [5]. 

CONCLUSIONS 

The advantage of the method presented here over the one 
given in [3] is that the final solutions for the growth of the 
freezing layer are simple and compact to be of practical 
use. And furthermore, the solutions are general so that they 
are also applicable to the cases where. the boundary condi- 
tions are time dependent (i.e. varying wall temperatures IS]). 
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